Developmental downregulation of excitatory GABAergic transmission in neocortical layer I via presynaptic adenosine A(1) receptors.

نویسندگان

  • Knut Kirmse
  • Anton Dvorzhak
  • Rosemarie Grantyn
  • Sergei Kirischuk
چکیده

Layer I of the developing cortex contains a dense GABAergic fiber plexus. These fibers provide excitatory inputs to Cajal-Retzius (CR) cells, the early born neurons in layer I. CR cells possess an extensive axonal projection and form synaptic contacts with excitatory, presumably pyramidal, neurons before birth. Interestingly, activity of CR cells declines during the first postnatal week, but mechanism(s) underlying this phenomenon is not yet known. Here we recorded inhibitory postsynaptic currents (IPSCs) in CR cells at postnatal day (P) 1-2 and P5-7. Blockade of adenosine A(1) receptors (A(1)Rs) increased the amplitude of evoked IPSCs (eIPSCs) and decreased paired-pulse ratio at P5-7 but not at P1-2. A(1)R activation decreased the mean eIPSC amplitude at P5-7, but failed to affect eIPSCs at P1-2. Ecto-adenosine triphosphatase (ATPase) inhibition completely abolished the A(1)R-mediated effects suggesting that extracellular ATP is the main source of adenosine. Because A(1)R blockade did not affect the median miniature IPSC amplitude, our results demonstrate that adenosine reduces gamma-aminiobutyric acid (GABA) release probability via presynaptic A(1)Rs at P5-7. As neuronal activity in layer I can depolarize pyramidal neurons influencing thereby glutamatergic synaptogenesis in the lower cortical layers, postnatal weakening of GABAergic transmission by adenosinergic system might reflect a developmental downregulation of this excitatory drive when glutamatergic synapses are formed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

GHB depresses fast excitatory and inhibitory synaptic transmission via GABA(B) receptors in mouse neocortical neurons.

Gamma-hydroxybutyrate (GHB) is a drug of abuse which induces sedation and euphoria. However, overdoses can severely depress the level of consciousness or can be fatal especially when combined with other substances. Studies have suggested that the GHB-effects are mediated via actions on thalamocortical pathways and local neocortical circuits, although the effect of GHB at the level of single neo...

متن کامل

Presynaptic depression of synaptic transmission mediated by activation of metabotropic glutamate receptors in rat neocortex.

Conventional intracellular recordings were obtained from layer II-III neurons in adult rat neocortical brain slices. Excitatory and inhibitory (I) postsynaptic potentials (PSPs) were evoked prior to and during bath application of agonists and antagonists of metabotropic glutamate receptors (mGluRs). In the presence of the selective mGluR agonist 1S,3R-1-aminocyclopentane-1,3- dicarboxylic acid ...

متن کامل

Insertion of alpha7 nicotinic receptors at neocortical layer V GABAergic synapses is induced by a benzodiazepine, midazolam.

Benzodiazepines act mainly at postsynaptic gamma-aminobutyric acid type A (GABA(A)) receptors. In rat neocortical layer V pyramidal neurons, we found that midazolam (MDZ), a benzodiazepine, increases the frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) via insertion of alpha7 nicotinic acetylcholine receptors (nAChRs) at presynaptic GABAergic boutons. Although nicotine...

متن کامل

Plasticity in Single Axon Glutamatergic Connection to GABAergic Interneurons Regulates Complex Events in the Human Neocortex

In the human neocortex, single excitatory pyramidal cells can elicit very large glutamatergic EPSPs (VLEs) in inhibitory GABAergic interneurons capable of triggering their firing with short (3-5 ms) delay. Similar strong excitatory connections between two individual neurons have not been found in nonhuman cortices, suggesting that these synapses are specific to human interneurons. The VLEs are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 18 2  شماره 

صفحات  -

تاریخ انتشار 2008